Unit 9 Outline – Applications of Differentiation

Thursday 1/16	Today's Topic: The Accumulation Function
In-Class Examples: Notes Handout	
Homework: Workshe	et 72

Friday 1/17Today's Topic: The Accumulation Function – The Fundamental Theorem of Calculus #2In-Class Examples: Notes Handout

Homework: Worksheet 73

Tuesday 1/21	Today's Topic: Extreme Value Theorem
In-Class Examples: Notes Handout	
Homework: Worksheet 74	

Wednesday 1/22	Today's Topic: First Derivative Test	
In-Class Examples: Notes Handout		
Homework: Worksheet 75		

Thursday 1/23	Today's Topic: The First Derivative Test (Graphs and Tables)		
In-Class Examples: Handout			
Homework: Worksheet 76			
BLOCK DA	YS		
Friday 1/24	Today's Topic: Mean Value Theorem		

Recall:

Use the Intermediate Value Theorem to show that the polynomial function $f(x) = x^3 + 2x - 1$ has a zero in the interval [0,1].
In-Class Examples: Ex. 1 Determine if the Mean Value Theorem applies to $f(x) = x^3 - x$ on $[0,2]$. If so, find the value(s) guaranteed by MVT.
 Ex. 2 Determine if the Mean Value Theorem applies to f(x) = x³ - 3x² + 2x on [0,3]. If so, find the value(s) guaranteed by MVT. Ex. 3 → Determine if the Mean Value Theorem applies to f(x) = x³ + 2x² - x on [-1,2]. If so, find the
value(s) guaranteed by MVT. Ex. 4 For the following functions, specifically state why MVT does not apply.
a) $f(x) = \frac{x+5}{x-1}$ on $[-3,5]$ b) $g(x) = x^{\frac{2}{3}}$ on $[-3,3]$
Homework: Worksheet 77

Monday 1/27	Today's Topic: The Concavity Test	
In-Class Examples: Notes Handout		
Homework: Worksheet 78		

Tuesday 1/28 Today's Topic: - First Derivative Test CheckPoint Quiz	
In-Class Examples: None	
Homework: None	

Wednesday 1/29	Today's Topic:
	- The Second Derivative Test for Max/Min
	Suppose $f'(c) = 0$. If
	- $f''(c) > 0$, then $f(x)$ has a local minimum at $x = c$.
	- $f''(c) < 0$, then $f(x)$ has a local maximum at $x = c$.
	The second derivative test fails if:
	- $f''(c) = 0$ or $f''(c)$ does not exist
In-Class Examples: N	otes Handout
Homework: Workshee	st 79

Thursday 1/30 Today's		Today's	Topic: Optimization
In-Class	s Examples		
1.	1. The sum of one number and twice another is 24. Find the two numbers so that their product is a maximum.		
2.	2. A rectangular field of 100 square feet is to be enclosed on all four sides. Find dimensions which will result in using the least amount of fencing.		
3.	3. A square piece of tin has 12 inches on a side. An open box is formed by cutting out equal square pieces at the corners and bending upward the projecting portions which remain. Find the maximum volume that can be obtained.		
Homew	Homework: Worksheet 80		
Friday 1	1/31		Today's Topic: Optimization and Reading Graphs

In-Class Examples 1. A rectangular field adjacent to a river is to be enclosed. No fencing is required next to the river. If fencing costs \$3 per meter and the area to be enclosed is 1200 square meters, determine the dimensions of the field that is the least expensive.

2. Find two positive numbers such that their product is 192 and the sum of the first and three times the second is a minimum.

Homework: Worksheet 81

Monday 2/3 Toda	ay's Topic: Second Derivative Checkpoint Quiz		
In-Class Examples: None	In-Class Examples: None		
Homework: Worksheet 82			

Tuesday 2/4	Today's Topic:Reading Graphs Checkpoint QuizReview - 1st and 2nd Derivative Test, FTC #2, Optimization and Graphs	
In-Class Examples: None		
Homework: Worksheet	83	

Wednesday 2/5	Today's Topic: Review	
In-Class Examples: No	In-Class Examples: None	
Homework: Worksheet 83b		

Thursday 2/6	Today's Topic: AP Multiple Choice Questions
In-Class Examples: None	
Homework: AP Multiple Choice Questions	

Friday 2/7	Today's Topic: Applications of the Derivative Examination
In-Class Examples: None	
Homework: None	